Detecting public sentiment over PM2.5 pollution hazards through analysis of Chinese microblog

نویسندگان

  • Yongzhong Sha
  • Jinsong Yan
  • Guoray Cai
چکیده

Decision-making in crisis management can benefit from routine monitoring of the (social) media to discover the mass opinion on highly sensitive crisis events. We present an experiment that analyzes Chinese microblog data (extracted from Weibo.cn) to measure sentiment strength and its change in relation to the recent PM 2.5 air pollution events. The data were analyzed using SentiStrength algorithm together with a special sentiment words dictionary tailored and refined for Chinese language. The results of time series analysis on detected sentiment strength showed that less than one percent of the posts are strong-positive or strong negative. Weekly sentiment strength measures show symmetric changes in positive and negative strength, but overall trend moved towards more positive opinions. Special attention was given to sharp bursts of sentiment strength that coincide temporally with the occurrence of extreme social events. These findings suggest that sentiment strength analysis may generate useful alert and awareness of pending extreme social events.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Every Term Has Sentiment: Learning from Emoticon Evidences for Chinese Microblog Sentiment Analysis

Chinese microblog is a popular Internet social medium where users express their sentiments and opinions.But sentiment analysis onChinese microblogs is difficult: The lack of labeling on the sentiment polarities restricts many supervised algorithms; out-of-vocabulary words and emoticons enlarge the sentiment expressions, which are beyond traditional sentiment lexicons. In this paper, emoticons i...

متن کامل

Detecting Microblogger's Attitude towards Bursty Events: A Text Chain Model

With the booming of social media, microblog attracts more and more people to discuss public issues and share their views and opinions. In this paper, we focus on the sentiment analysis in Chinese microblog from the aspect of users. We aim to detect microbloger’s attitude on bursty events by proposing a novel text chain model. We firstly formulate the problem of user sentiment analysis. By lever...

متن کامل

Opinion Sentence Extraction and Sentiment Analysis for Chinese Microblogs

Sentiment analysis of Chinese microblogs is important for scientific research in public opinion supervision, personalized recommendation and social computing. By studying the evaluation task of NLP&CC’2012, we mainly implement two tasks, namely the extraction of opinion sentence and the determination of sentiment orientation for microblogs. First, we manually label the sample of microblog corpu...

متن کامل

A Joint Model for Chinese Microblog Sentiment Analysis

Topic-based sentiment analysis for Chinese microblog aims to identify the user attitude on specified topics. In this paper, we propose a joint model by incorporating Support Vector Machines (SVM) and deep neural network to improve the performance of sentiment analysis. Firstly, a SVM Classifier is constructed using N-gram, NPOS and sentiment lexicons features. Meanwhile, a convolutional neural ...

متن کامل

Particulate Matter Pollution and Population Exposure Assessment over Mainland China in 2010 with Remote Sensing

The public is increasingly concerned about particulate matter pollution caused by respirable suspended particles (PM10) and fine particles (PM2.5). In this paper, PM10 and PM2.5 concentration are estimated with remote sensing and individual air quality indexes of PM10 and PM2.5 (IPM10 and IPM2.5) over mainland China in 2010 are calculated. We find that China suffered more serious PM2.5 than PM1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014